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Correlations in 1D Bose gases

@ Correlation functions : important characterisation of quantum
gases
@ Physics in reduced dimension
o very different from 3D (absence of BEC in 1D ideal Bose gases)
e Enhanced fluctuations : no TRLO
o Physics governed by interactions
@ Cold atom experiments : powerful simulators of quantum gases.
Reduced dimension achieved by strong transverse confinement.
Atom chip experiment : 1D configuration naturally realised.




@ Regimes of 1D Bose gases
© Experimental apparatus

© Density fluctuations
e Measurements
e Weakly interacting regime : quasi-condensation and
sub-poissonian fluctuations
o Entering the strongly interacting regime
@ Beyond 1D physics
@ Quasi-bec
o Contribution of excited transverse states in the crossover

© Third moment of density fluctuations

@ Momentum distributions of a 1D gas
e focussing technics
e Classical field analysis
e Results
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Regimes of 1D Bose gases

1D Bose gas with repulsive contact interaction

H= —

h2

o A

Exact solution : Lieb-Liniger Thermodynamic : Yang-Yang (60’) n, T

Length scale : [, = h? /mg, Energy scale E, = g’m/2h”

Parameters : 1 = T/E .y = 1/nly = mg/h*n
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Reg f 1D Bo:

Strongly interacting 1D Bose gas

e 2 body scattering wave function (z) = cos(kz + ), E = h?k* /m

IfE> Eg, |1(0) ~ 1

E, = mg?/2h?
If E < E,, [1(0)] < 1 g =me”/
e Many body system
» g?(0) ~0
Y Fermionization
| W 7 L
T T T T z T T(_)Y T T z
~1/n
E=gn>E, E=nrn/m< E, Y
=>v<k1 =v>1

Strongly interacting regime : v > 1,1 < 1



Nearly ideal gas regime : bunching phenomena

o Two-body correlation function g2(z) = (Y bd 1y.) /n?

222 le=MXap:lp|>T T
N L= Rn/(mT) : |u| < T
1L
R
0 ’
7 -z

@ Bunching effect — density fluctuations.
(on(z) on(2)) = (n)*(g2(2' —2) — 1) + (m)d(z — 2')

@ Bunching : correlation between particles. Quantum statistic

o Field theory 1) = > e, n = [)|* : speckle phenomena



e Repulsive Interactions — Density fluctuations require energy
P Hiw =% [dzp* = SHiy > 0
Reduction of density fluctuations at low
temperature/high density
weakly interacting : v = mg/h*n < 1

Cross-over : %H,-m o gn ~ |pl

Transition for a

Neo ox T2/3
- degenerate gas

2,2
p=mT?/20n%, = | T., ~ 5= /5

e For T < T, ,. : quasi-bec regime, g(2) ~ 1
Ifﬂ,‘/}

T > gn




Reg

Transition towards quasi-condensate

e Repulsive Interactions — Density fluctuations require energy
P Hiw =% [dzp* = SHiy > 0
Reduction of density fluctuations at low
temperature/high density
weakly interacting : v = mg/h*n < 1

Cross-over : %H,-m o gn ~ |pl

Transition for a
degenerate gas

w=mT?/2m%n*, = T,, ~ n? VY e, ox T?/3

2m

e For T < T, ,. : quasi-bec regime, g(2) ~ 1
Ifﬂ,‘/}

T > gn
_ T < gn R




Regimes of 1D Bos

1D weakly interacting homogeneous Bose gas
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&0 j SN quantum fluctuations
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Regimes of 1D Bose

1D weakly interacting homogeneous Bose gas

1est6 \\\\\ ideal gas t= thT/(mgz) Neo = )\L{wtl/G
t .
| quasi-condensateF ST ideal gas quasi-condensate
R o T classical field
: théory
. T
. 82 O) ]N quantum fluctuations
large transition 2 3\‘\\
quantum decoherent | TR E : - e
regime barely exists i
for 1 < 1000 — "
le
§ = h/\/mgne
)\dB
n

Quantum decoherent regime

n<0 nw~gn>0



Regimes of 1D Bose gases

Cross-over towards quasi-bec in a one-dimensionnal gas

trapped in a harmonic potential

_ 2.2
Local density approach : V =1/2mwz

w(z) = pro—mw?z% /2

Local correlations properties :
that of a homogeneous gas with © = p(z).
Validity : [, < 14

ndz*
At quasi-condensation transition : [, = £
32,
=T>w, ( > =

Easilly fulfilled experlmentally
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Experime!

Realisation of very anisotropic traps on an atom chip

Magnetic confinement of 3’R;, by micro-wires
H-shape trap
wy/2m =3 —4kHz
w,/2m =5 —10Hz

— H
~ - 1D:T,pu < hwy
3m < g = 2hw a
chip mount \
. @ _ trapping wire
CCD camera . ? %/
In-situ images T ~ 400 — 15nK t >~ 80 — 1000
gbsolute calibration ~3.0— 015w, Weakly interacting

D N ~ 5000 — 1000. gases




Experimental apparatus

Reaching strongly interacting gases on an atom-chip

e A new atom-guide

3 wire modulated guide

Quadrupolar @ Roughness free (modulation)

field @ Strong confinement : 1 — 150 kHz

[©L_[X]_[®) =14 @ Diverse longitudinal potentials
AIN wn = 200kHz

15.m @ Dynamical change of g

e Approaching strong interactions
w,/(27) = 19kHz, w, = 7.5 Hz

45
40

Experimental sequence : o Yang-Yahg solution
: ; \ =431

% Cooling at moderate w| 1 ]

* Increase w N

Problem : exess of heating "
(Entropy not preserved)

0 n n n n h -
0 10 20 30 40 50 60 70 80
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Density fluctuations
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© Density fluctuations
@ Measurements
@ Weakly interacting regime : quasi-condensation and
sub-poissonian fluctuations
@ Entering the strongly interacting regime



Density fluctuations

Density fluctuation measurements

e Statistical analysis over hundreds of images

l.,A <KL

— local density approximation
ON binned according to (N)
(6N?) versus n = (N)/A
Optical shot noise substracted

|_Contribution of

atomic fluctuations
100f 1

— Mean curve
ZOptlcal shot noise

100 150 200
Z/A

(SN?) : Two-body correlation function integral

(6N?) = (N) +n //dzgzz—z -1)

l. < A= (0N?) = (N) + (N

= Thermodynamic quantity

n [dz(ga(z—2) —1)

on
ON?) = kgTA=—
< ) = ks ou




Density fluctuations

Effect of finite spatial resolution

e Absorption of an atom spreads on several pixels

— blurring of the image

Decrease of fluctuations :
(ON?) = K2 (6N?)irue

— Correlation between pixels

0.8
0.6’ ]:1
047 Segllsgl e geeee
Qﬁ02
<l =2
oINS A GOSN L

0 20 40 60 80 100 120
(N)

¢ deduced from measured
correlations between
adjacent pixels

Ky deduced



Density fluctuations

Expected behavior in asymptotic regimes

e Ideal gas regime

|
le
822 le=Xp:|lp|>T > Non degenerate gas : nl, < 1
e (ON?) = (N)
l.> X\ |p|<T > Degenerate gas : nl, > 1
0 7z (6N?) ~ (N)nl. = (NY2l./A
(ON2)

e Quasi-bec regime
Thermodynamic : p ~ gn
= (ON?) = AT/g




Density fluctuations

Experimental results
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— Poissonian level

| — Ideal Bose gas

— Exact Yang—-Yang

thermodynamics
Quasi—cond (beyond 1D)

o Strong bunching effect in the transition region

@ Quasi-bec both in the thermal and quantum regime



Density fluctuations

Quasi-condensate in the quantum regime

We measure : | (IN?) < (N)
(ON?) = (N) + (N)n [dz(g2(z) —1) =g@ < 1: Quantum regime

e However we still measure thermal excitations
Shot noise term, removed from the g(? fonction, IS quantum.
Low momentum phonons (k < T/u€) : high occupation number

Non trivial quantum fluctuations
dominate

For our datas :
~_ Quantum fluctuations Ir = (T/p&)~" < 450 nm

Thermal fluctuations Ir < AS

T/ ue 1/¢ k




Density fluctuations

From weakly to strongly interacting gases

fet08 = (SN?) max/ (N o '3
16406 “nearly ideal gas | g
h, dqg;';e\,,‘ ~ classical = 1> 1
10000 enna] Yo~ i
quasieondensate - —
t 100f S 1 (N)
s quantum ~
strongly interacting
0.01 == E &
~ > 11
Se =S5
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o smaller ¢ : smaller bunching (IN?)nax/(N) o /3

@ t < 1 : Fermi behavior — from poissonian to sub-poissonian.
No bunching anymore

t small, -y large = g large = large w,



Density fluctuations

Density fluctuations close to the strongly interacting regime

Moderate compression : w /27 = 18.8 kHz
T =40 nK~ hw, /20 r~5
w/T ~1.9

30
25
20
215y

10 ¥ X
5

%10 20 30 40 50 60

(N)
No bunching seen anymore, at a level of 20%.
Behavoir close to that of a Fermi gas
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@ Beyond 1D physics
@ Quasi-bec
@ Contribution of excited transverse states in the crossover



Beyond 1D

1D-3D Crossover in the quasi-bec reg

1 << hw, (na < 1) — Pure 1D quasi-bec
i 2 hwy : 1D— 3D behavior

Transverse breathing associated with a longitudinal phonon has to be
taken into account.

Thermodynamic argument : Var(N) = kgT 3—2’)

T =96nK ~ 0.5/w

Heuristic equation : 160 —
= hwiV1+4na f { 77}77}777{,-;——*}"

(a)

5 S * Quasi-bec prediction
= ; S |
3 2 /
= - 60 /
o _ < Wl |
R T Modified Yang-Yang|prediction
20 F 4
Efficient thermometry % B 00 5 0 %0

(N)



Beyond 1D physics

Modified Yang-Yang model

If puco < Ay, , transversally excited states behave as ideal Bose gases.

n | ! v
‘ | | .
J v
0. ) l ———

1/3 1/3 2/3
Heo = Eg/ 1% = (ng/hZ) / T3 = ,Uco/(hwl_) = (%ﬁ)
For our parameters : a/l; ~ 0.025
Modified Yang-Yang model :

e Transverse ground state : Yang-Yang thermodynamic

o Excited transverse states : ideal 1D Bose gases
First introduced by Van Druten and co-workers : Phys. Rev. Lett. 100, 090402 (2008)



Modified Yang-Yang model

T =150 nK ~ 1.0Aw | T =490 nK ~ 3.2/ |

600 T T T T T T
‘ ‘ 1600 - .
400 | % 3 ﬁ)@% 1200 R
- - % > o = i
\%/ g 800 |- N
200 |- i L / i
P 400 - 4 .
L i ! | | | | ]

00 160 zbo 300 % 5100 200 300 400 500 600 700 800
N (N)

Very good agreement
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Third moment of density fluctuations

Third moment of density fluctuations

Non gaussian fluctuations

We look at | (6N?)
e Motivation
Learn about 3 body correlations
e A thermodynamic quantity :

]
3

number of coun

(6N?) = AT?——

e Effect of finite spatial resolution :
(6N3) = K3(6N3)rue» 13 depends on resolution.
k3 infered from neighbour pixels correlation.



Third moment of density fluctuations

Third moment of density fluctuations

T = 380 nK T =96 nK
—_— 1200 ; o ;
30001 s wol %‘ o0 :
22000 £20 S0l | T L w D
= 300 % 4007 . 1
81000 " = OQ@JLT ] 7‘(1 717 lT
I$1 i 117 1
0 ] —400¢ T f - L TT
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0.8p ' ]
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Measured 3™ moment compatible with MY'Y.
Skweness vanishes in quasi-bec regime (as expected)

n = (ON%)/ (5N}



Third moment of density fluctuations

Three-body correlations

(6N3) function of g and g(®. ¢g® function contains g(?
We measure :

H = (ON*) + 2(N) = 3(0N*) =’ [ [ [ h(z1,22,23),

h(z1,22,23) =8 (21,22, 23) — 8P (21, 22) — 8P (21, 23) — 8P (22, 23) +2

8000 - - —] 800F

6000 | o1 o

4000 | o

2000 o —800
0 , ~"  L1e00r ¢
0 100 200 300 0 50 100 150 200

(V) (V)
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@ Momentum distributions of a 1D gas
@ focussing technics
@ Classical field analysis
@ Results



Momentur
Momentum distribution measurements : motivation

Momentum distribution : TF of first order correlation function
n = n/dug(l)(u)eik”

Cannot be derived from the equation of state.
Its measurement opens perspectives (study of dynamics for example)

Problem : global measurement — averaged over many different
situations in presence of a smooth longitudinal potential



Momentur
Focussing techniques

Momentum distribution measurement

p
e Short kick of a strong
harmonic potential == —
= 0p = —Az
p
e Free fligh until focuss == =

Final spatial distribution : initial momentum distribution, averaged
over the initial position

Experiment well adapted :

e longitudinal confinement undependent on transverse one

e Purely harmonic potential (up to order z°)



Momentur

Focussing

Images taken at focus (f, = 15ms) for different initial temperatures
(initial RF knife position)
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Momentur
Expected results in limiting cases

Momentum distribution not knowned exactly.
ideal gas quasi-condensate
classical : degenerate thermal qguantum
classical field theory valid .
Id Y : Fixed T

/ 1} )\dB Neo \ n
S np
I T

gaussian P Lorentzian P Lorentzian P

Beyond this approach, some knowed results :
* 1/p* tail
* Mean kinetic energy (second moment of n,) via Yang-Yang



1D classical field calculation

1(z) : complex field of energy functionnal

E[{U}] = / dz lzhm

No high energy divergence (as in higher dimension).
Mapped to a Schrodinger equation, evolving in imaginary time

2

av g
LS P

dz

~2 3
S 4 h [8 22 22\2 22 2 ] h
H=2_ 4+ =" |° _ M=

For L — oo, only ground state contribute to g(!) :

gV (2) = (dol(x — i)e /(5 + i5) | o)

Very fast calculation (as opposed to Monte Carlo sampling).



Momentur

Comparison with exact calculations

_ ideal gas quasi—condensate
classical . degenerate
classical field theory valid Fixed T
-r ‘ 0
ideal gas . . classical field
interpolation

Comparison with quantum Monte Carlo calculation

t=60,v=0.027 t=60,v=0.056
w>0,n>ng, w<0,n<ng,
10 10
101 101
x10 10 Gaussian or 1/p* tails
10 10 Not reproduced by CF
10 10
10-46'36:26-100 102030 40 Y. L MM AR, (m

p(mT/(nh)) p(mT/(nh))



Momentur

Result : degenerate ideal Bose gas regime

Classical Field Fit : T=88.0 nK 3

10
600) ‘ o
_ Classical field
500 . 2
—Quasi—condensate  __1¢g
400 g
F
10
! /
1-8-6-4-202 468 0
—1
15 k(pm™")
70 . . . .
5 o In agreement with insitu density
50 fluctuations
£ 40
©
=30

@ Good agreement with CF

e Lorentzian behavior : 1/p? tail

0720 30 40 50 60
Nat



Momentur

Result : quasi-condensate regime

Fit : T7?5 nK

Bogoliubov

60 ‘\ —— Classical field

10-15-10-5 0 5 10 15

10 / k()
~15-10-50 5 10 15 20
(™)
* . . . .
. * @ In agreement with insitu density
__k .
B fluctuations
" @ Good agreement with CF
e Lorentzian behavior : 1/p? tail
05 101520'\2‘513035404550
al

@ not in agreement with Bogoliubov



Momentur
Conclusion and prospetcs

Conclusion

@ Precise density fluctuation measurement

Good thermometry

Investigation of the quasi-condensation transition
Strong anti-bunching

Higher order correlation functions

Dimensional crossover

@ Momentum distribution measurement
Prospects

o Investigation of out-of-equilibrium situations : dynamic
following a quench, relaxation towards non thermal states

o Using tomography to gain in spatial resolution and investigate

2

g (r)

o Investigating the physics of the Mott transition in 1D using the
probes we developped : pinning transition.
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